So should you. We have multiple lines of concordant evidence indicating that dinosaurs cannot possibly be in the tens of thousands of years old. And then we have one group of people using carbon dating to come up with discordant (unverified, unrepeated) dates, when we already know that given the other evidence we have, carbon dating will definitely come up with the wrong result. What's your source on this, again?
I am sympathetic with your skepticism. The person who originally discovered dinosaur soft tissue couldn't believe it and repeated her tests multiple times. As to my source, it is reproduced in full below. It can be found under
Carbon-14 dating dinosaur bones,
newgeology.us/presentation48.html
Carbon-14-dated dinosaur bones are less than 40,000 years old
carbon-14 dating dinosaur bones carbon dated dinosaur fossils
date c-14 dinosaur fossil bones by c14 dinosaur bones fossils
Researchers have found a reason for the puzzling survival of soft tissue and collagen in dinosaur bones - the bones are younger than anyone ever guessed. Carbon-14 (C-14) dating of multiple samples of bone from 8 dinosaurs found in Texas, Alaska, Colorado, and Montana revealed that they are only 22,000 to 39,000 years old.
Members of the Paleochronology group presented their findings at the 2012 Western Pacific Geophysics Meeting in Singapore, August 13-17, a conference of the American Geophysical Union (AGU) and the Asia Oceania Geosciences Society (AOGS).
Since dinosaurs are thought to be over 65 million years old, the news is stunning - and more than some can tolerate. After the AOGS-AGU conference in Singapore, the abstract was removed from the conference website by two chairmen because they could not accept the findings.Unwilling to challenge the data openly, they erased the report from public view without a word to the authors. When the authors inquired, they received this letter:
They did not look at the data and they never spoke with the researchers. They did not like the test results, so they censored them.
Carbon-14 is considered to be a highly reliable dating technique. It's accuracy has been verified by using C-14 to date artifacts whose age is known historically. The fluctuation of the amount of C-14 in the atmosphere over time adds a small uncertainty, but contamination by "modern carbon" such as decayed organic matter from soils poses a greater possibility for error.
Dr. Thomas Seiler, a physicist from Germany, gave the presentation in Singapore. He said that his team and the laboratories they employed took special care to avoid contamination. That included protecting the samples, avoiding cracked areas in the bones, and meticulous pre-cleaning of the samples with chemicals to remove possible contaminants. Knowing that small concentrations of collagen can attract contamination, they compared precision Accelerator Mass Spectrometry (AMS) tests of collagen and bioapatite (hard carbonate bone mineral) with conventional counting methods of large bone fragments from the same dinosaurs. "Comparing such different molecules as minerals and organics from the same bone region, we obtained concordant C-14 results which were well below the upper limits of C-14 dating. These, together with many other remarkable concordances between samples from different fossils, geographic regions and stratigraphic positions make random contamination as origin of the C-14 unlikely".
The theoretical limit for C-14 dating is 100,000 years using AMS, but for practical purposes it is 45,000 to 55,000 years. The half-life of C-14 is 5730 years. If dinosaur bones are 65 million years old, there should not be one atom of C-14 left in them.
Many dinosaur bones are not petrified. Dr. Mary Schweitzer, associate professor of marine, earth, and atmospheric sciences at North Carolina State University, surprised scientists in 2005 when she reported finding soft tissue in dinosaur bones. She started a firestorm of controversy in 2007 and 2008 when she reported that she had sequenced proteins in the dinosaur bone.Critics charged that the findings were mistaken or that what she called soft tissue was really biofilm produced by bacteria that had entered from outside the bone. Schweitzer answered the challenge by testing with antibodies. Her report in 2009 confirmed the presence of collagen and other proteins that bacteria do not make. In 2011, a Swedish team found soft tissue and biomolecules in the bones of another creature from the time of the dinosaurs, a Mosasaur, which was a giant lizard that swam in shallow ocean waters. Schweitzer herself wonders why these materials are preserved when all the models say they should be degraded. That is, if they really are over 65 million years old, as the conventional wisdom says.
Dinosaur bones with Carbon-14 dates in the range of 22,000 to 39,000 years before present, combined with the discovery of soft tissue in dinosaur bones, indicate that something is indeed wrong with the conventional wisdom about dinosaurs.
However, it has been hard to reach the public with the information. Despite being simple test results without any interpretation, they were blocked from presentation in conference proceedings by the 2009 North American Paleontological Convention, the American Geophysical Union in 2011 and 2012, the Geological Society of America in 2011 and 2012, and by the editors of various scientific journals. Fortunately, there is the internet.
The data: Carbon-14 in dinosaur bones
Dinosaur
(a)
Lab/Method/Fraction (b,c,d)
C-14 Years B.P.
Date
USA State
Acro
Acro
Acro
Acro
Acro
Allosaurus
Hadrosaur #1
Hadrosaur #1
Triceratops #1
Triceratops #1
Triceratops #1
Triceratops #2
Triceratops #2
Hadrosaur #2
Hadrosaur #2
Hadrosaur #2
Hadrosaur #2
Hadrosaur #2
Hadrosaur #3
Apatosaur
GX-15155-A/Beta/bio
GX-15155-A/AMS/bio
AA-5786/AMS/bio-scrapings
UGAMS-7509a/AMS/bio
UGAMS-7509b/AMS/bow
UGAMS-02947/AMS/bio
KIA-5523/AMS/bow
KIA-5523/AMS/hum
GX-32372/AMS/col
GX-32647/Beta/bow
UGAMS-04973a/AMS/bio
UGAMS-03228a/AMS/bio
UGAMS-03228b/AMS/col
GX-32739/Beta/ext
GX-32678/AMS/w
UGAMS-01935/AMS/bio
UGAMS-01936/AMS/w
UGAMS-01937/AMS/col
UGAMS-9893/AMS/bio
UGAMS-9891/AMS/bio
>32,400
25,750
+ 280
23,760
+ 270
29,690
+ 90
30,640
+ 90
31,360
+ 100
31,050 + 230/-220
36,480 + 560/-530
30,890
+ 200
33,830 + 2910/-1960
24,340
+ 70
39,230
+ 140
30,110
+ 80
22,380
+ 800
22,990
+130
25,670
+ 220
25,170
+ 230
23,170
+ 170
37,660
+ 160
38,250
+ 160
11/10/1989
06/14/1990
10/23/1990
10/27/2010
10/27/2010
05/01/2008
10/01/1998
10/01/1998
08/25/2006
09/12/2006
10/29/2009
08/27/2008
08/27/2008
01/06/2007
04/04/2007
04/10/2007
04/10/2007
04/10/2007
11/29/2011
11/29/2011
TX
TX
TX
TX
TX
CO
AK
AK
MT
MT
MT
MT
MT
MT
MT
MT
MT
MT
CO
CO
(a) Acro (Acrocanthosaurus) is a carnivorous dinosaur excavated in 1984 near Glen Rose TX by C. Baugh and G. Detwiler; in 108 MA Cretaceous sandstone - identified by Dr. W. Langston of Un. of TX at Austin.
Allosaurus is a carnivorous dinosaur excavated in 1989 by the J. Hall, A. Murray team.It was found under an Apatosaurus skeleton in the Wildwood section of a ranch west of Grand Junction CO in 150 Ma (late Jurassic) sandstone of the Morrison formation.
Hadrosaur #1, a duck billed dinosaur. Bone fragments were excavated in 1994 along Colville River by G. Detwiler, J. Whitmore team in the famous Liscomb bone bed of the Alaskan North Slope - validated by Dr. J. Whitmore.
Hadrosaur #2, a duck billed dinosaur. A lone femur bone was excavated in 2004 in clay in the NW 1/4, NE 1/4 of Sec. 32, T16N, R56 E, Dawson County, Montana by the O. Kline team of the Glendive Dinosaur and Fossil Museum.It was sawed open by the O. Kline, H. Miller team in 2005 to retrieve samples for C-14 testing.
Triceratops #1, a ceratopsid dinosaur. A lone femur bone was excavated in 2004 in Cretaceous clay at 47 6 18N by 104 39 22W in Montana by the O. Kline team of the Glendive Dinosaur and Fossil Museum. It was sawed open by the O. Kline, H. Miller team in 2005 to retrieve samples for C-14 testing.
Triceratops #2, a very large ceratopsid-type dinosaur excavated in 2007 in Cretaceous clay at 47 02 44N and 104 32 49W in Montana by the O. Kline team of Glendive Dinosaur and Fossil Museum. Outer bone fragments of a femur were tested for C-14.
Hadrosaur #3, a duck billed dinosaur. Scrapings were taken from a large bone excavated by Joe Taylor of Mt. Blanco Fossil Museum, Crosbyton TX in Colorado in Cretaceous strata.
Apatosaur, a sauropod. Scrapings were taken from a rib still imbedded in the clay soil of a ranch in CO, partially excavated in 2007 and 2009, in 150 Ma (late Jurassic) strata by C. Baugh and B. Dunkel.
(b) GX is Geochron Labs, Cambridge MA, USA; AA is University of Arizona, Tuscon AZ, USA; UG is University of Georgia, Athens GA, USA; KIA is Christian Albrechts Universitat, Kiel Germany.
(c) AMS is Accelerated Mass Spectrometry; Beta is the conventional method of counting Beta decay particles.
(d) Bio is the carbonate fraction of bioapatite. Bow is the bulk organic fraction of whole bone; Col is collagen fraction; w or ext is charred, exterior or whole bone fragments; Hum is humic acids.
Bioapatite is a major component of the mineralised part of bones. It incorporates a small amount of carbonate as a substitute for phosphate in the crystal lattice.
Charred bone is the description given by lab personnel for blackened bone surfaces.
Collagen: Proteins that are the main component of connective tissue. It can be as high as 20% in normal bone but decomposes over time so that there should be none after ~100,000 years. Yet it is found in four-foot long, nine-inch diameter dinosaur femur bones claimed to be greater than 65 million years old. The "Modified Longin Method" is the normal purification method for bone collagen. Dr. Libby, the discoverer of Radiocarbon dating and Nobel Prize winner, showed that purified collagen could not give erroneous ages.
Click to see a YouTube video of the conference presentation
Click to see the conference schedule for presentation of abstract BG02-A012 at 17:00