After World War II, two distinct possibilities emerged. One was Fred Hoyle's steady state model, whereby new matter would be created as the Universe seemed to expand. In this model, the Universe is roughly the same at any point in time. The other was Lemaître's Big Bang theory, advocated and developed by George Gamow, who introduced big bang nucleosynthesis (BBN) and whose associates, Ralph Alpher and Robert Herman, predicted the cosmic microwave background radiation (CMB). Ironically, it was Hoyle who coined the phrase that came to be applied to Lemaître's theory, referring to it as "this big bang idea" during a BBC Radio broadcast in March 1949. For a while, support was split between these two theories. Eventually, the observational evidence, most notably from radio source counts, began to favor Big Bang over Steady State. The discovery and confirmation of the cosmic microwave background radiation in 1964 secured the Big Bang as the best theory of the origin and evolution of the cosmos. Much of the current work in cosmology includes understanding how galaxies form in the context of the Big Bang, understanding the physics of the Universe at earlier and earlier times, and reconciling observations with the basic theory.
Huge strides in Big Bang cosmology have been made since the late 1990s as a result of major advances in telescope technology as well as the analysis of copious data from satellites such as COBE, the Hubble Space Telescope and WMAP. Cosmologists now have fairly precise and accurate measurements of many of the parameters of the Big Bang model, and have made the unexpected discovery that the expansion of the Universe appears to be accelerating.