Given that the mosasaur humerus was housed in the collections at IRSNB for many years, the possibility existed that the collagenous matter identified herein was non-authentic, and instead originated from fungal growth or gelatin-based bone glue. However, histological sections of untreated bone revealed that the fibrous microstructures were deeply embedded in hydroxyapatite prior to demineralization (
Figure 1M). Moreover, TOF MS and DNA analyses failed to detect any ergosterol or nucleic acids attributable to fungi, and we were unable to identify any substances that could be related to bone glue (for instance, the vessel lumina were draped by iron oxide crystals, not organic matter;
Figure 4). Likewise, the amount of finite carbon was exceedingly small, corresponding to 4.68%±0.1 of modern 14C activity (
yielding an age of 24 600 BP), and most likely reflect bacterial activity near the outer surface of the bone (although no bacterial proteins or hopanoids were detected, one bacterial DNA sequence was amplified by PCR, and microscopic clusters of bone-boring cyanobacteria were seen in places along the perimeter of the diaphyseal cortex). Two short DNA sequences of possible lagomorph origin were amplified by PCR (together with three human sequences), and consequently it is possible that the outer surface of the bone has been painted with animal glue at some point. Nonetheless, based on the extremely weak PCR products obtained from the DNA analysis (8–26 ng/μl after two rounds of PCR and doubling up of the PCR reaction volume, suggesting very few copies of template DNA prior to PCR), the amount of lagomorph contamination is exceedingly small and cannot account for the relatively large quantities of fibrous matter located in between the vessel-like forms (i.e., in the area of the osteoid). Additionally, some fiber bundles are partially mineralized (
Figure 8), providing convincing evidence for their antiquity. Accordingly, we find it reasonable to conclude that the collagenous biomolecules recovered from the fibrous tissues of IRSNB 1624 are primary.