Endogenous retroviruses (ERVs) have become all but extinct in the human lineage, with only a single retrovirus (human endogenous retrovirus K (HERV-K)) still active
24. HERV-K was found to be active in both lineages, with at least 73 human-specific insertions (7 full length and 66 solo long terminal repeats (LTRs)) and at least 45 chimpanzee-specific insertions (1 full length and 44 solo LTRs). A few other ERV classes persisted in the human genome beyond the human−chimpanzee split, leaving
9 human-specific insertions (all solo LTRs, including five HERV9 elements) before dying out.
Against this background, it was surprising to find that the chimpanzee genome has two active retroviral elements (PtERV1 and PtERV2) that are unlike any older elements in either genome; these must have been introduced by infection of the chimpanzee germ line. The smaller family (PtERV2) has only a few dozen copies, which nonetheless represent multiple (
5−8) invasions, because the sequence differences among reconstructed subfamilies are too great (
8%) to have arisen by mutation since divergence from human. It is closely related to a baboon endogenous retrovirus (BaEV, 88% ORF2 product identity) and a feline endogenous virus (ECE-1, 86% ORF2 product identity). The larger family (PtERV1) is more homogeneous and has over 200 copies. Whereas older ERVs, like HERV-K, are primarily represented by solo LTRs resulting from LTR−LTR recombination, more than half of the PtERV1 copies are still full length, probably reflecting the young age of the elements. PtERV1-like elements are present in the rhesus monkey, olive baboon and African great apes but not in human, orang-utan or gibbon, suggesting separate germline invasions in these species
68.