For anyone wanting to argue against protocells, like any scientific theory, you have to address the data. So, to start off, here is some of the data on protocells -- their formation, composition, and capabilities. I have taken the time to obtain and read the papers (part of my own critical evaluation of Fox's claims). Anyone can walk me thru the papers and try to show where the data is wrong. This will be in two posts due to length limitations.
Web sites:
http://www.siu.edu/~protocell/
http://www.theharbinger.org/articles/rel_sci/fox.html
First papers:
Fox, S.W. and K. Harada. 1958. Thermal copolymerization of amino acids to a product resembling protein. Science 128: 1214.
Fox, S. W., K. Harada, and J. Kendrick. 1959. Production of spherules from synthetic proteinoids and hot water. Science 129: 1221-1223.
Hayakawa, T, Windsor, CR, Fox, SW. Coploymerization of the Leuchs anhydrides of the eithtten amino acides common to proteins. Arch. Biochem. Biophys. 118: 265-272, 1967.
Melius, P, Sheng, YY-P. Thermal condensation of a mixture of six amino acids. Bioorg. Chem. 4: 385-391, 1975.
Protocells under prebiotic conditions:
Snyder WD and Fox, SW. A model for the origin of stable protocells in a primitive alkaline ocean. BioSystems 7: 222-229, 1975.
Rohlfing, DL. Thermal polyamino acids: synthesis at less than 100°C. Science 193: 68-70, 1976.
Syren RM, Sanjur A, Fox SW Proteinoid microspheres more stable in hot than in cold water. Biosystems 1985;17(4):275-80 (protocells at hydrothermal vents)
Yanagawa, H. and K. Kobayashi. 1992. An experimental approach to chemical evolution in submarine hydrothermal. systems. Origins of Life and Evolution of the Biosphere 22: 147-159.
Marshall, W. H. 1994. Hydrothermal synthesis of amino acids. Goechimica et Cosmochimica Acta 58: 2099-2106.
McAlhaney WW, Rohlfing DL. Formation of proteinoid microspheres under simulated prebiotic atmospheres and individual gases. Biosystems 1976 Jul;8(2):45-50
Fouche-CE Jr; Rohlfing-DL Thermal polymerization of amino acids under various atmospheres or at low pressures. Biosystems. 1976 Jul; 8(2): 57-65
SW Fox, Thermal polymerization of amino-acids and production of formed microparticles on lava. Nature, 201: 336-337, Jan. 25, 1964.
Hennon, G, Plaquet, R, Biserte, G. The synthesis of amino acid polymers by thermal condensation at 105° without a catalyst. Biochimie 57: 1395-1396, 1975.
Heinz, B, Reid, W. The formation of chromophores through amino acid thermolysis and their possible role as prebiotic photoreceptors. BioSystems 14: 33-40, 1981.
Structure and internal ordering:
Turcotte, PA, Paolillo, L, Ferrara, L, Benedetti, E, Andini, S. Structural characterization of thermal prebiotic polypeptides. J. Mol. Evol. 7: 105-110, 1976.
Rohlfing, DL. Thermal poly-a-amino acids containing low proportions of aspartic acid. Nature 216: 657-659, 1967.
Tyagi S, Ponnamperuma C Nonrandomness in prebiotic peptide synthesis. J Mol Evol 1990 May;30(5):391-9
Melius P. Structure of thermal polymers of amino acids. Biosystems 1982;15(4):275-80 Jul;8(2):45-50
SW Fox, Stereomolecular interactions and microsystems in experimental protobiogenesis. BioSystems 7: 22-36, 1975
SW Fox, Self-sequencing of amino acids and origins of polyfunctional protocells. Origins of Life, 14: 485-488, 1984.
Temussi, PA, Paolillo, L, Ferrara, L, Benedetti, I, Aninin, S. Structural characterization of thermal prebiotic polypeptides. J. Mol. Evol. 7: 105-110, 1976.
Pivcova, H, Saudek, V, Drobnik, J, Vlasak, J. NMR study of poly (aspartic acid) I. a- and b-peptide bonds in poly(aspartic acid) prepared by thermal polycondensation. Biopolymers 20: 1605-1614, 1981.
Nakashima, T, Jungck, JR, Fox, SW, Lederer, E, Das, BC. A test for randomness in peptides isolated from a thermal polyamino acid. Intl. J. Quantum Chem. QBS4: 65-72, 1977.
Luque-Romero MM, de Medina LS, Blanco JM. Fractionation and amino acid composition of an aspartic acid-containing thermal proteinoid population. Biosystems. 1986;19(4):267-72.
Bahn, P. and A. Pappelis. 2001. HPLC evidence of nonrandomness in thermal proteins. In First Steps in the Origin of Life in the Universe. Julián Chela-Flores, Tobias Owen, and François Raulin, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands. Pp. 69-72.
Bahn, P. and A. Pappelis. 2001. IR spectra of protein, thermal protein, and thermal glycoprotein. In First Steps in the Origin of Life in the Universe. Julián Chela-Flores, Tobias Owen, and François Raulin, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands. Pp.73-76.
Thermal proteins from DL and nonproteinous amino acids
Saunders MA and Rohlfing DL, Inclusion of nonproteinous amino acids in thermally prepared models for prebiotic protein. Biosystems 6. 81-92, 1974.
Metabolism:
Rohlfing, DL, Fox, SW. Catalytic activities of thermal polyanhydro-a-amino acids. Advances Catal. 20: 373-418, 1969.
Hydrolysis (energy gaining):
p-nitrophenyl acetate
Fox, S., Harada, K. Rohlfing, DL The thermal copolymerization of a-amino acids. In Stahmann, MA (ed) Polyamino Acids, Polypeptides, and Proteins (Univ. of Wisconsin Press, Madison) 47-54, 1962
Rohlfing DL and Fox, SW. The catalytic activity of thermal polyanhydro-a-amino acids for the hydrolysis of p-nitrophenyl acetate. Arch. Biochem. Biophys. 118: 127-132, 1967.
Usdin, VR, Mitz, MA, Killos, PJ. Inhibition and reactivation of the catalytic activity of a thermal a-amino acid copolymer. Arch. Biochem. Biophys. 122: 258-261, 1967.
p-nitrophenyl phospate
Oshima, T. The catalytic hydrolysis of phosphate ester bonds by thermal polymers of amino acid. Arch. Biochim. Biophys. 126: 478-485, 1968.
Decarboxylation
Glururonic acid: Fox, SW and Krampitz, G. The catalytic decomposition of glucose in aqueous solution by thermal proteinoids. Nature 203: 1362-134, 1964
Pyruvic acid: Hardebeck, HG, Krampitz, G, Wulf, L. Decarboxylation of pyruvic acid in aqueous solution by thermal proteinoids. Arch. Biochem. Biophys. 123: 72-81, 1986.
Oxaloacetic acid: Rohlfing, DL THe catalytic decarboxylation of oxaloacetic acid by thermally prepared poly-a-aminoacids. ARch. biochem. Biophys. 118: 468-474, 1967.
Deamination
Krampitz, G, Haas, W. Baas-Diehl, S. Glutaminsaure-Oxydoreductase-Aktivitat von polyanhydro-a-aminosauren (proteinoiden). Naturwissenschaften 55: 345-346, 1968.
Anabolism:
Amination: Krampitz, g, Baars-Diehl,S, Haas, W, Nakashima,T. Aminotransferase activity of thermal polylysine. Experientia 24: 140-142, 1968.
Kolesnikov, M.P. 1991. Proteinoid microspheres and the process of prebiological, photophosphorylation. Origins of Life and Evolution of the Biosphere 21: 31-37. ADP + Pi + light yields ATP
RNA/DNA: JR Jungck and SW Fox, Synthesis of oligonucleotides by proteinoid microspheres acting on ATP. Naturwissenschaften, 60: 425-427, 1973.
Peptides:
T Nakashima and SW Fox, Synthesis of peptides from amino acids and ATP with lysine rich proteinoid. J. Mol. Evol. 15: 161-168. 1980.
Fox, SW, Jungck, JR, Nakashima, T. From proteinoid microsphere to contemporary cell: formation of internucleotide and peptide bonds by proteinoid particles. Origins of Life 5: 227-237, 1974.
Nakashima, T, Fox, SW. Formation of peptides by single or multiple additions of ATP to suspensions of nucleoproteinoid microparticles. BioSystems 14: 151-161, 1981.
Paecht-Horowitz M, Katchalsky A. J Synthesis of amino acyl-adenylates under prebiotic conditions. Mol Evol 1973;2(2-3):91-8
Oxidoreductions: H2O2 (catalase) and H2O2 and hydrogen donors (peroxidase reaction)
Dose, K, Zaki,L. The peroxidatic and catalase activity of hemoproteinoids. Z. Naterforsch 26b: 144-148, 1971.
Photoactivated decarboxylation -- glycoxylic acid, glucuronic acid, pyruvic acid.
Wood, A, Hardebeck, HG. Light-enhanced decarboxylations by proteinoids. In Rohlfing, DL and Oparin, AI (eds) Molecular Evolution (Plenum, New York), 233-245, 1972.
Hormone: Fox, SW, Wang, C-t. Melanocyte-stimulating hormone activity in in thermal proteins of a-amino acids. Science 160: 547-548, 1968.
Compartments within protocells:
Brooke S, Fox SW. Compartmentalization in proteinoid microspheres.Biosystems. 1977 Jun;9(1):1-22.
Photosynthesis:
Bahn PR, Fox SW. Models for protocellular photophosphorylation. Biosystems. 1981;14(1):3-14.
Masinovsky Z, Lozovaya GI, Sivash AA, Drasner M. Porphyrin-proteinoid complexes as models of prebiotic photosensitizers. Biosystems 1989;22(4):305-10.
Masinovsky Z, Lozovaya GI, Sivash AA. Some aspects of the early evolution of photosynthesis. Adv Space Res 1992;12(4):199-205.
Response to stimuli
Przybylski AT. Excitable cell made of thermal proteinoids. Biosystems 1985;17(4):281-288.
Vaughan G, Przybylski AT, Fox SW. Thermal proteinoids as excitability-inducing materials. Biosystems. 1987;20(3):219-23.
Ishima Y, Przybylski AT, Fox SW. Electrical membrane phenomena in spherules from proteinoid and lecithin. Biosystems. 1981;13(4):243-51.
Pappelis, A., S. W. Fox, R. Grubbs, and J. Bozzola. 1998. Animate protocells from inanimate thermal proteins: Visualization of the Process. In Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe. J. Chela-Flores and F. Raulin, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, Pp.195-198.
Growth and Reproduction:
Fox, SW, McCauley, RJ, Wood, A A model of primitive heterotrophic proliferation. Comp. Biochem. Physiol. 20: 773-778, 1967.
Fox, SW. Molecular evolution to the first cells. Pure Appld. Chem. 34: 641-669, 1973.
Communication:
Hsu, LL, Brooke, S, Fox, SW. Conjugation of proteinoid microspheres: a model of primordial communication. Curr. Mod. Biol. (now BioSystems) 4: 12-25, 1971.
Web sites:
http://www.siu.edu/~protocell/
http://www.theharbinger.org/articles/rel_sci/fox.html
First papers:
Fox, S.W. and K. Harada. 1958. Thermal copolymerization of amino acids to a product resembling protein. Science 128: 1214.
Fox, S. W., K. Harada, and J. Kendrick. 1959. Production of spherules from synthetic proteinoids and hot water. Science 129: 1221-1223.
Hayakawa, T, Windsor, CR, Fox, SW. Coploymerization of the Leuchs anhydrides of the eithtten amino acides common to proteins. Arch. Biochem. Biophys. 118: 265-272, 1967.
Melius, P, Sheng, YY-P. Thermal condensation of a mixture of six amino acids. Bioorg. Chem. 4: 385-391, 1975.
Protocells under prebiotic conditions:
Snyder WD and Fox, SW. A model for the origin of stable protocells in a primitive alkaline ocean. BioSystems 7: 222-229, 1975.
Rohlfing, DL. Thermal polyamino acids: synthesis at less than 100°C. Science 193: 68-70, 1976.
Syren RM, Sanjur A, Fox SW Proteinoid microspheres more stable in hot than in cold water. Biosystems 1985;17(4):275-80 (protocells at hydrothermal vents)
Yanagawa, H. and K. Kobayashi. 1992. An experimental approach to chemical evolution in submarine hydrothermal. systems. Origins of Life and Evolution of the Biosphere 22: 147-159.
Marshall, W. H. 1994. Hydrothermal synthesis of amino acids. Goechimica et Cosmochimica Acta 58: 2099-2106.
McAlhaney WW, Rohlfing DL. Formation of proteinoid microspheres under simulated prebiotic atmospheres and individual gases. Biosystems 1976 Jul;8(2):45-50
Fouche-CE Jr; Rohlfing-DL Thermal polymerization of amino acids under various atmospheres or at low pressures. Biosystems. 1976 Jul; 8(2): 57-65
SW Fox, Thermal polymerization of amino-acids and production of formed microparticles on lava. Nature, 201: 336-337, Jan. 25, 1964.
Hennon, G, Plaquet, R, Biserte, G. The synthesis of amino acid polymers by thermal condensation at 105° without a catalyst. Biochimie 57: 1395-1396, 1975.
Heinz, B, Reid, W. The formation of chromophores through amino acid thermolysis and their possible role as prebiotic photoreceptors. BioSystems 14: 33-40, 1981.
Structure and internal ordering:
Turcotte, PA, Paolillo, L, Ferrara, L, Benedetti, E, Andini, S. Structural characterization of thermal prebiotic polypeptides. J. Mol. Evol. 7: 105-110, 1976.
Rohlfing, DL. Thermal poly-a-amino acids containing low proportions of aspartic acid. Nature 216: 657-659, 1967.
Tyagi S, Ponnamperuma C Nonrandomness in prebiotic peptide synthesis. J Mol Evol 1990 May;30(5):391-9
Melius P. Structure of thermal polymers of amino acids. Biosystems 1982;15(4):275-80 Jul;8(2):45-50
SW Fox, Stereomolecular interactions and microsystems in experimental protobiogenesis. BioSystems 7: 22-36, 1975
SW Fox, Self-sequencing of amino acids and origins of polyfunctional protocells. Origins of Life, 14: 485-488, 1984.
Temussi, PA, Paolillo, L, Ferrara, L, Benedetti, I, Aninin, S. Structural characterization of thermal prebiotic polypeptides. J. Mol. Evol. 7: 105-110, 1976.
Pivcova, H, Saudek, V, Drobnik, J, Vlasak, J. NMR study of poly (aspartic acid) I. a- and b-peptide bonds in poly(aspartic acid) prepared by thermal polycondensation. Biopolymers 20: 1605-1614, 1981.
Nakashima, T, Jungck, JR, Fox, SW, Lederer, E, Das, BC. A test for randomness in peptides isolated from a thermal polyamino acid. Intl. J. Quantum Chem. QBS4: 65-72, 1977.
Luque-Romero MM, de Medina LS, Blanco JM. Fractionation and amino acid composition of an aspartic acid-containing thermal proteinoid population. Biosystems. 1986;19(4):267-72.
Bahn, P. and A. Pappelis. 2001. HPLC evidence of nonrandomness in thermal proteins. In First Steps in the Origin of Life in the Universe. Julián Chela-Flores, Tobias Owen, and François Raulin, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands. Pp. 69-72.
Bahn, P. and A. Pappelis. 2001. IR spectra of protein, thermal protein, and thermal glycoprotein. In First Steps in the Origin of Life in the Universe. Julián Chela-Flores, Tobias Owen, and François Raulin, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands. Pp.73-76.
Thermal proteins from DL and nonproteinous amino acids
Saunders MA and Rohlfing DL, Inclusion of nonproteinous amino acids in thermally prepared models for prebiotic protein. Biosystems 6. 81-92, 1974.
Metabolism:
Rohlfing, DL, Fox, SW. Catalytic activities of thermal polyanhydro-a-amino acids. Advances Catal. 20: 373-418, 1969.
Hydrolysis (energy gaining):
p-nitrophenyl acetate
Fox, S., Harada, K. Rohlfing, DL The thermal copolymerization of a-amino acids. In Stahmann, MA (ed) Polyamino Acids, Polypeptides, and Proteins (Univ. of Wisconsin Press, Madison) 47-54, 1962
Rohlfing DL and Fox, SW. The catalytic activity of thermal polyanhydro-a-amino acids for the hydrolysis of p-nitrophenyl acetate. Arch. Biochem. Biophys. 118: 127-132, 1967.
Usdin, VR, Mitz, MA, Killos, PJ. Inhibition and reactivation of the catalytic activity of a thermal a-amino acid copolymer. Arch. Biochem. Biophys. 122: 258-261, 1967.
p-nitrophenyl phospate
Oshima, T. The catalytic hydrolysis of phosphate ester bonds by thermal polymers of amino acid. Arch. Biochim. Biophys. 126: 478-485, 1968.
Decarboxylation
Glururonic acid: Fox, SW and Krampitz, G. The catalytic decomposition of glucose in aqueous solution by thermal proteinoids. Nature 203: 1362-134, 1964
Pyruvic acid: Hardebeck, HG, Krampitz, G, Wulf, L. Decarboxylation of pyruvic acid in aqueous solution by thermal proteinoids. Arch. Biochem. Biophys. 123: 72-81, 1986.
Oxaloacetic acid: Rohlfing, DL THe catalytic decarboxylation of oxaloacetic acid by thermally prepared poly-a-aminoacids. ARch. biochem. Biophys. 118: 468-474, 1967.
Deamination
Krampitz, G, Haas, W. Baas-Diehl, S. Glutaminsaure-Oxydoreductase-Aktivitat von polyanhydro-a-aminosauren (proteinoiden). Naturwissenschaften 55: 345-346, 1968.
Anabolism:
Amination: Krampitz, g, Baars-Diehl,S, Haas, W, Nakashima,T. Aminotransferase activity of thermal polylysine. Experientia 24: 140-142, 1968.
Kolesnikov, M.P. 1991. Proteinoid microspheres and the process of prebiological, photophosphorylation. Origins of Life and Evolution of the Biosphere 21: 31-37. ADP + Pi + light yields ATP
RNA/DNA: JR Jungck and SW Fox, Synthesis of oligonucleotides by proteinoid microspheres acting on ATP. Naturwissenschaften, 60: 425-427, 1973.
Peptides:
T Nakashima and SW Fox, Synthesis of peptides from amino acids and ATP with lysine rich proteinoid. J. Mol. Evol. 15: 161-168. 1980.
Fox, SW, Jungck, JR, Nakashima, T. From proteinoid microsphere to contemporary cell: formation of internucleotide and peptide bonds by proteinoid particles. Origins of Life 5: 227-237, 1974.
Nakashima, T, Fox, SW. Formation of peptides by single or multiple additions of ATP to suspensions of nucleoproteinoid microparticles. BioSystems 14: 151-161, 1981.
Paecht-Horowitz M, Katchalsky A. J Synthesis of amino acyl-adenylates under prebiotic conditions. Mol Evol 1973;2(2-3):91-8
Oxidoreductions: H2O2 (catalase) and H2O2 and hydrogen donors (peroxidase reaction)
Dose, K, Zaki,L. The peroxidatic and catalase activity of hemoproteinoids. Z. Naterforsch 26b: 144-148, 1971.
Photoactivated decarboxylation -- glycoxylic acid, glucuronic acid, pyruvic acid.
Wood, A, Hardebeck, HG. Light-enhanced decarboxylations by proteinoids. In Rohlfing, DL and Oparin, AI (eds) Molecular Evolution (Plenum, New York), 233-245, 1972.
Hormone: Fox, SW, Wang, C-t. Melanocyte-stimulating hormone activity in in thermal proteins of a-amino acids. Science 160: 547-548, 1968.
Compartments within protocells:
Brooke S, Fox SW. Compartmentalization in proteinoid microspheres.Biosystems. 1977 Jun;9(1):1-22.
Photosynthesis:
Bahn PR, Fox SW. Models for protocellular photophosphorylation. Biosystems. 1981;14(1):3-14.
Masinovsky Z, Lozovaya GI, Sivash AA, Drasner M. Porphyrin-proteinoid complexes as models of prebiotic photosensitizers. Biosystems 1989;22(4):305-10.
Masinovsky Z, Lozovaya GI, Sivash AA. Some aspects of the early evolution of photosynthesis. Adv Space Res 1992;12(4):199-205.
Response to stimuli
Przybylski AT. Excitable cell made of thermal proteinoids. Biosystems 1985;17(4):281-288.
Vaughan G, Przybylski AT, Fox SW. Thermal proteinoids as excitability-inducing materials. Biosystems. 1987;20(3):219-23.
Ishima Y, Przybylski AT, Fox SW. Electrical membrane phenomena in spherules from proteinoid and lecithin. Biosystems. 1981;13(4):243-51.
Pappelis, A., S. W. Fox, R. Grubbs, and J. Bozzola. 1998. Animate protocells from inanimate thermal proteins: Visualization of the Process. In Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe. J. Chela-Flores and F. Raulin, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, Pp.195-198.
Growth and Reproduction:
Fox, SW, McCauley, RJ, Wood, A A model of primitive heterotrophic proliferation. Comp. Biochem. Physiol. 20: 773-778, 1967.
Fox, SW. Molecular evolution to the first cells. Pure Appld. Chem. 34: 641-669, 1973.
Communication:
Hsu, LL, Brooke, S, Fox, SW. Conjugation of proteinoid microspheres: a model of primordial communication. Curr. Mod. Biol. (now BioSystems) 4: 12-25, 1971.