- Feb 18, 2021
- 2,389
- 1,169
- Country
- United States
- Gender
- Male
- Faith
- Catholic
- Marital Status
- Married
- Politics
- US-Others
Modern humans evolutionarily split from our chimpanzee ancestors nearly 7 million years ago, yet we are continuing to evolve. 155 new genes have been identified within the human lineage that spontaneously arose from tiny sections of our DNA. Some of these new genes date back to the ancient origin of mammals, with a few of these "microgenes" predicted to be associated with human-specific diseases.
Three of these 155 new genes have disease-associated DNA markers that point to connections with ailments such as muscular dystrophy, retinitis pigmentosa, and Alazami syndrome. Apart from disease, the researchers also found a new gene that is associated with human heart tissue. This gene emerged in humans and chimps right after the split from gorillas and shows just how fast a gene can evolve to become essential for the body.
"It will be very interesting in future studies to understand what these microgenes might do and whether they might be directly involved in any kind of disease," says Vakirlis.
Read More...
Three of these 155 new genes have disease-associated DNA markers that point to connections with ailments such as muscular dystrophy, retinitis pigmentosa, and Alazami syndrome. Apart from disease, the researchers also found a new gene that is associated with human heart tissue. This gene emerged in humans and chimps right after the split from gorillas and shows just how fast a gene can evolve to become essential for the body.
"It will be very interesting in future studies to understand what these microgenes might do and whether they might be directly involved in any kind of disease," says Vakirlis.
Read More...