The first prediction (evidence of a telomere at the fusion point) is shown to be true in reference 3 . Telomeres in humans have been shown to consist of head to tail repeats of the bases 5'TTAGGG running toward the end of the chromosome. Furthermore, there is a characteristic pattern of the base pairs in what is called the pre-telomeric region, the region just before the telomere. When the vicinity of chromosome 2 where the fusion is expected to occur (based on comparison to chimp chromosomes 2p and 2q) is examined, we see first sequences that are characteristic of the pre-telomeric region, then a section of telomeric sequences, and then another section of pre-telomeric sequences. Furthermore, in the telomeric section, it is observed that there is a point where instead of being arranged head to tail, the telomeric repeats suddenly reverse direction - becoming (CCCTAA)3' instead of 5'(TTAGGG), and the second pre-telomeric section is also the reverse of the first telomeric section. This pattern is precisely as predicted by a telomere to telomere fusion of the chimpanzee (ancestor) 2p and 2q chromosomes, and in precisely the expected location. Note that the CCCTAA sequence is the reversed complement of TTAGGG (C pairs with G, and T pairs with A).
The second prediction - remnants of the 2p and 2q centromeres is documented in reference 4. The normal centromere found on human chromosome 2 lines up with the 2p chimp chromosome, and the remnants of the 2q chromosome is found at the expected location based upon the banding pattern.
Some may raise the objection that if the fusion was a naturalistic event, how could the first human ancestor with the fusion have successfully reproduced? We have all heard that the horse and the donkey produce an infertile mule in crossing because of a different number of chromosomes in the two species. Well, apparently there is more to the story than we are usually told, because variations in chromosome number are known to occur in many different animal species, and although they sometimes seem to lead to reduced fertility, this is often not the case. Refs 5, 6, and 7 document both the existence of such chromosomal number differences and the fact that differences do not always result in reduced fertility. I can provide many more similar references if required. The last remaining species of wild horse, Przewalski's (sha-val-skis) Wild Horse has 66 chromosomes while the domesticated horse has 64 chromosomes. Despite this difference in chromosome number, Przewalski's Wild Horse and the domesticated horse can be crossed and do produce fertile offspring (see reference 9).
Now, the question has to be asked - if the similarities of the chromosomes are due only to common design rather than common ancestry, why are the remnants of a telomere and centromere (that should never have existed) found at exactly the positions predicted by a naturalistic fusion of the chimp ancestor chromosomes 2p and 2q?